

As Socrates said
*"The only good is knowledge
and the only evil is ignorance ".*

PART ONE

For more than twenty years, thousands of researchers from all over the world have shown, with experiments on animals, first, and on human beings later, that the use of a specific part of our blood, has the ability to regenerate any cell, tissue or organ of our body.

The previous sentence certainly makes us think of Stem Cells, which are talked about and studied so much, but which we are forbidden to use to treat many diseases, even the most serious and disabling ones. For what reason? Because pharmaceutical companies do business on our pathologies, especially with symptomatic drugs; and who finances the medical school and most of the scientific research? The pharmaceutical companies, in fact.

Given the current times, I felt I had to remain anonymous, I'll just say that I am a Neurobiologist. However, I decided to provide all the useful information to use the therapeutic and curative power of stem cells present in our body and also the tools to verify the authenticity of what I am saying: all the data of the scientific works to which I refer, they are contained in a database that can be consulted by all; it is in English but also accessible to those who do not know this language. There is a free browser called google chrome that makes it possible to translate any document published in a language other than ours (including Arabic and Japanese). You can download it here:

https://www.google.com/chrome/?brand=BNSD&gclid=Cj0KCQiA2sqOBhCGARIsAPuPK0hwllAri99GcuWnvq-cNYSEWAvZxtZa3imQdcAGlg1M9axfS8t_sJcaApChEALw_wcB&gclsrc=aw.ds.

The database to verify the scientific researches of everything presented in this document is called PubMed: with over 24 million bibliographic references derived from approximately 5,300 biomedical journals, it allows access to the online bibliographic archive of the MEDLARS system, MEDLINE (Medical Literature Analysis and Retrieval System). Compared to Medline, however, it is enriched by references from other specialized secondary bibliographic databases, such as the Index to Dental Literature, the International Nursing

Index, the Hospital Literature Index and other sources of information on specific sectors. <https://pubmed.ncbi.nlm.nih.gov/>

MESENCHIMAL STEM CELLS

These are adult stem cells capable of replicating and transforming into other types of cells. They have immunomodulatory properties, that is, they are able to regulate the alterations of the immune system's responses, have anti-inflammatory abilities and, once grafted into the body, favor the healing processes on site by migrating to damaged tissue.

Despite the thousands of scientific studies that demonstrate their therapeutic capacity for many diseases, all the diseases that could be treated (and resolved) with these cells, are orphaned of therapies or, at most, "relieved" with symptomatic drugs (DRUGS, in fact ...).

How are they obtained? The simplest and cheapest method would be to take them from the adipose tissue (of the same patient), put them in culture (thus increasing the quantity tenfold) and re-infuse them intravenously into the patient. All this should be done in a hospital setting and certainly involves costs, but these are negligible compared to those that are spent on drugs (DRUGS, in fact ...) which not only do not resolve the disease but, in most cases, are the cause of the onset of other diseases.

Why, despite their proven effectiveness on diseases such as Alzheimer's, Parkinson's, Amyotrophic Lateral Sclerosis, Multiple Sclerosis and many others, after years of research and proven exclusion of adverse effects, stem cells are not used to treat these terrible diseases? Answer: if they did so, what would become of the trillions of dollars that pharmaceutical companies earn with the DRUGS (symptomatic, sometimes useless, often causing the worsening of the disease) that they sell us to treat these diseases?

In summary: sick people are considered simply customers and healthy people a loss of profit, this is the logical reasoning of the managers of the pharmaceutical companies.

Therefore, if we want to treat ourselves with stem cells, we must learn to do the preparation independently, given that Big Pharma will never give us the opportunity to cure ourselves with this excellent therapy

Subcutaneous plasma a possible alternative to stem cell treatment

Platelets are the most effective drug dispensers created by nature. They are involved both in the blood clotting process and in the tissue repair process.

Once activated, platelets begin to release growth factors (1,2,3,4) and, after the initial release, they synthesize and secrete additional factors for the remaining seven days of their life (5).

Platelet Rich Plasma (**PRP**), with the release of growth factors, is an alternative to stem cell "transplantation"; this is because it has the ability to activate and induce the proliferation of Mesenchymal Stem Cells (MSC) which, recalled by specific chemical signals, they enter the bloodstream and migrate to damaged tissues or organs, and repair them (6,7,8,9,10, 11,12,13).

SUBCUTANEOUS ADMINISTRATION OF PRP

The various scientific studies published in international medical journals refer to local or intravenous administration of PRP (Platelet Rich Plasma): I have verified, with pre and post treatment blood tests, that the subcutaneous administration route (in the abdominal area) determines a systemic effect of PRP as effective as the intravenous administration.

Parenteral subcutaneous administration is used by many thousands of patients who self-manage on a daily basis, such as those who use insulin to manage diabetes, recipients of some types of hormone therapy, and others (14).

Ideally, all subcutaneous tissues with sufficient mass, in the absence of skin changes or edema, can be used for subcutaneous administration (15).

Drugs administered subcutaneously are usually completely absorbed from the systemic circulation within 30 minutes (16); the absorption is between 78% and 100% (17,18).

Subcutaneous administration is more effective and safer than both the intramuscular and intravenous route of administration: in the adipose tissue present in the hypodermis there is, in fact, a much higher concentration of MSC than that present in other tissues; there is therefore an immediate activation, mobilization and input to the proliferation of a massive amount of Mesenchymal

Stem Cells. In addition, the simplicity of execution of the proposed method allows it to be used at home or in hospitalization facilities and allows you to avoid hospitalization, with a consequent reduction in preparation and somministration costs.

1. Dhurat R, Sukesh M. **Principles and Methods of Preparation of Platelet-Rich Plasma: A Review and Author's Perspective.** J CutanAesthetSurg. 2014 Oct-Dec;7(4):189-97. doi: 10.4103/0974-2077.150734.
2. Ming Li, Kequan Guo and Susumu Kehara, Review: **Stem Cell Treatment for Alzheimer's Disease** Int. J. Mol. Sci. 2014, 15, 19226-19238; doi:10.3390/ijms151019226
3. Wasterlain AS1, Braun HJ, Harris AH, Kim HJ, Dragoo JL. **The systemic effects of platelet-rich plasma injection.** Am J Sports Med. 2013 Jan;41(1):186-93. doi: 10.1177/0363546512466383. Epub 2012 Dec 4.
4. Lyras DN, Kazakos K, Agrogiannis G, Verettas D, Kokka A, Kiziridis G, Chronopoulos E, Tryfonidis M. **Experimental study of tendon healing early phase: is IGF-1 expression influenced by platelet-rich plasma gel?** Orthop Traumatol Surg Res. 2010 Jun;96(4):381-7. doi: 10.1016/j.otsr.2010.03.010. Epub 2010 May 7.
5. Marx RE. **Platelet-rich plasma: evidence to support its use** J OralMaxillofacSurg. 2004 Apr;62(4):489-96.
6. Schilephake H. **Bone growth factors in maxillofacial skeletal reconstruction.** Int J OralMaxillofacSurg. 2002 Oct;31(5):469-84.
7. Alsousou J, Thompson M, Hulley P, Noble A, Willett K. **The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature.** J Bone Joint Surg Br. 2009 Aug;91(8):987-96. doi: 10.1302/0301-620X.91B8.22546.
8. Parsons P1, Butcher A, Hesselden K, Ellis K, Maughan J, Milner R, Scott M, Alley C, Watson JT, Horner A. **Platelet-rich concentrate supports human mesenchymal stem cell proliferation, bone morphogenetic protein-2 messenger RNA expression, alkaline phosphatase activity, and bone formation in vitro: a mode of action to enhance bone repair.** J Orthop Trauma. 2008 Oct;22(9):595-604. doi: 10.1097/BOT.0b013e318188dbb7.
9. Krüger JP, Honcke S, Endres M, Pruss A, Siclari A, Kaps C. **Human platelet-rich plasma stimulates migration and chondrogenic differentiation of human subchondral progenitor cells.** J Orthop Res. 2012 Jun;30(6):845-52. doi: 10.1002/jor.22005. Epub 2011 Nov 4.
10. Mishra A, Tummala P, King A, Lee B, Kraus M, Tse V, Jacobs CR. **Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation.** Tissue Eng Part C Methods. 2009 Sep;15(3):431-5. doi: 10.1089/ten.tec.2008.0534.
11. Van der Wal EA, Gómez-Pinilla F, Cotman CW. **Transforming growth factor-beta 1 is in plaques in Alzheimer and Down pathologies.** Neuroreport. 1993 Jan;4(1):69-72.
12. Caraci F, Battaglia G, Bruno V, Bosco P, Carbonaro V, Giuffrida ML, Drago F, Sortino MA, Nicoletti F, Copani A. **TGF- β 1 pathway as a new target for neuroprotection in Alzheimer's disease.** CNS Neurosci Ther. 2011 Aug;17(4):237-49. doi: 10.1111/j.1755-5949.2009.00115.x. Epub 2009 Nov 19.
13. Sortino MA, Chisari M, Merlo S, Vancheri C, Caruso M, Nicoletti F, Canonico PL, Copani A. **Glia mediates the neuroprotective action of estradiol on beta-amyloid-induced neuronal death.** Endocrinology. 2004 Nov;145(11):5080-6. Epub 2004 Aug 12.
14. Gabriel J. The use of subcutaneous infusion in medication administration. **Br J Nurs.** 2013 Jul 25-Aug 7;22(14):S6, S8, S10 passim
15. Morichon E. **Guide pour l'Administration de Médicaments par Voie Sous-Cutanée.** Bulletin d'Information du médicament et de pharmacovigilance 2006; 128
16. G. Laval, B. Sang, MC. Villard. **Les principales thérapeutiques en soins palliatifs chez l'adulte et la personne âgée.** 2ème Edition ; Sauramps medical 2004 : 299 pages
17. A. Hirschauer. **L'hypodermoclyse : perfusion sous-cutanée continue ou discontinue.** FMC du 8 février 2005 AMEM (Association des Médecins de l'Est du Morbihan).
18. Lipschitz S, Campbell AJ, Roberts MS. **Subcutaneous fluid administration in elderly subjects: validation of an under-used technique.** J Am Geriatr Soc 1991;39:6-9).

SECOND PART

Stem cells are therefore undifferentiated cells that reach the damaged tissue and replace the damaged cells; with the PRP we can use these cells to treat various pathologies; however, if the CAUSE that determined the specific disease is not eliminated, we significantly reduce the results of therapy with PRP.

Neurodegenerative, autoimmune and other disorders:

CAUSE / S	EFFECTS	RESULT
Diet	<i>Inflammation of Cell damage</i>	<i>various pathologies including:</i>
Pathogens (viruses, bacteria, fungi)		Amiotrophic Lateral Sclerosis (ALS), Parkinson, Alzheimer,
Xenobiotics		Multiple Sclerosis (MS) and autoimmune diseases in general
Prolonged stress (including relationships "Toxic")		Depression, allergies, diabetes,
Genetics		Acute or chronic pain of various kinds

It is therefore important to repair the damage through the use of Stem Cells but it is equally important to discover the cause that determines that damage and eliminate it.

I would like to deepen two of the aforementioned causes: the simplest one (nutrition) and the apparently more complicated one, namely the genetic one:

DIET: For some years it has been confirmed that the wrong diet increases inflammation at low intensity, often unnoticed by the patient. Inflammation mainly affects (locally) the intestine, with increased permeability to exotoxins and food antigens. Within a few years we arrive at a state of immunological dysreactivity that evolves towards systemic autoimmunity (February 2004 the Time Magazine "The Secret Killer Is Inflammation- Inflammation is a Secret or Silent Killer": <https://naturespurest.co.nz/blogs/news/chronic-inflammation-the-secret-killer>).

GENETICS: Most of the genetic diseases, in order to manifest themselves, require the contribution of epigenetic factors; thus eliminating the latter (incorrect diet, deficiency of vitamins and / or mineral salts, stress, environmental pollution, pathogens, etc.) we drastically reduce the possibility that the genetic pathology produces its clinical manifestation and, where it had already manifested itself, we prevent its evolution and consequently clinical worsening.

In summary: gene mutations are predisposing factors but the participation of epigenetic factors is necessary for the manifestation of the disease.

The diagnostic and therapeutic approach of conventional medicine never investigates the cause that determines the onset of the disease but is limited to treating it with symptomatic drugs only.

One example among many is the treatment of Multiple Sclerosis. In the last 20 years, various immunomodulating and anti-inflammatory drugs have been developed that are able to control some symptoms of multiple sclerosis, without however being able to cure myelin lesions, nor to prevent further injuries resulting from the evolution of the disease. This is because by not investigating the cause, it cannot be eliminated.

It is as if, when a water pipe in the house, instead of repairing it, we continue to collect water, for days, months, years ... why not repair the pipe?

Furthermore, drugs for the treatment of multiple sclerosis not only do not resolve the disease but also have severe side effects. Let's see the ones currently in use:

Interferon 1-Beta: has an antiviral action. It can induce: leukopenia, thrombocytopenia, anemia, headache and liver disease. Thrombotic microangiopathy and nephrotic syndrome could be particularly serious, even after years of suspension (AIFA August 2014);

Mitoxantrone: cytotoxic, hepatotoxic and cardiotoxic immunosuppressant; it alters the structure of DNA, acts on B and T lymphocytes and macrophages. Side effects: anemia, fever, thrombocytopenia, hair loss;

Leucaran (Cladribina). Main side effects: bone marrow depression, infections, tumors;

Lemtrada (Alemtuzumab). Monoclonal antibody. Main side effects: secondary autoimmunity, tumors and renal failure;

Tysabri (Natalizumab). Monoclonal antibody. Main side effects: multifocal encephalopathy, leukopenia, urinary infections, vomiting;

Gilenya (Fingolimod). Main side effects: increased liver enzymes, infections, macular edema, bronchial constriction;

Aubagio (Teriflunomide). Main side effects: alopecia, respiratory and urinary tract infections, increased transaminases, nausea, vomiting and diarrhea;

Copaxone (Glatiramer acetate). Main side effects: hives, tachycardia, dyspnea, excessive sweating, convulsions;

Dimethyl fumarate (Tecfidera). Main side effects: flushing, nausea, diarrhea, progressive multifocal leukoencephalopathy.

Daclizumab. Humanized monoclonal antibody. Side effects: hepatotoxicity, depression, lung infections, TB, autoimmune haemolytic anemia, progressive multifocal leukoencephalitis. Withdrawn from the market on 2 March 2018, after 7 cases of progressive multifocal encephalopathy in Germany. On 7 August 2018, AIFA announced that "cases of immune-mediated encephalitis, including encephalitis caused by antibodies against a specific receptor, have been reported in patients during treatment with Daclizumab and even several months after discontinuation".

Bacitnib (Olumant, Incyte cp). Inhibitor of specific enzymes. Side effects: respiratory infections, lymphomas, TB, reactivation of viral infections, deep vein thrombosis;

Sponimod. It modulates specific cell receptors. Side effects: lymphopenia, increased transaminases, bradycardia and brady arrhythmias, macular edema, arterial hypertension, convulsions.

It would be interesting to know with what criteria the use of drugs that have worse side effects than the pathology that they are supposed to "cure" is authorized; in the same way we should pretend to know why other therapies (stem cells) lacking side effects and with a proven efficacy, are continually excluded from the list of various therapeutic approaches.

PART THREE

PROTOCOL FOR THE PREPARATION AND ADMINISTRATION OF PRP

- 1) Venous collection of two or three blood tubes
- 2) Place the tubes in the centrifuge
- 3) Centrifuge at 2,000 rpm for 7 minutes
- 4) Carefully extract each tube
- 5) Open the tube slowly avoiding sudden movements
- 6) Aspirate 80% (approximately) of plasma (from the red thrombus up)
- 7) After taking the plasma from all the tubes: disassemble the large needle and mount the small one, such as the insulin needle
- 8) Lift a fold of skin in the belly and very slowly administer the PRP. Being a quantity from 4 to 6 ml, administration in two abdominal areas is preferable. N.B. Absorption via the subcutaneous route is very slow so it is necessary to administer the plasma very slowly, even in 10 or 15 minutes.

IMPORTANT DETAILS:

- Venous collection of 2 or 3 blood tubes (5ml tubes with 3.8% sodium citrate, 0.129M, tube code: 367704). Each tube contains 0.5 ml of anticoagulant so it will contain 4.5 ml of blood). After filling each tube, slowly overturn it several times, so that the anticoagulant is distributed evenly.

- Place the tubes in the centrifuge: if 2 tubes face each other; if three test tubes, each spaced by an empty space (6 test tube holders being). This is important for balancing the rotor weights.
- Centrifuge at 2,000 rpm for 7 minutes
- Carefully remove each tube to avoid mixing between the plasma and the red thrombus. Place the tubes upright.
- Wear a surgical mask or handkerchief (to avoid polluting the contents of the tube with the exhaled air)
- Open the tube slowly avoiding sudden movements
- Place the needle of the 5 ml syringe (large needle 0.80x40mm 21Gx1 ½ ") at the limit between the red thrombus and the plasma, aspirate slowly, avoiding aspirating blood ...
- Stop aspiration when approximately 20% of the plasma remains in the tube. This is an important step because the platelets are more concentrated at the bottom and the plasma at the top is very low in platelets. The upper part (about 20%) must therefore be excluded to prevent it from lowering the final concentration.
- After taking the plasma from all the tubes: disassemble the large needle and mount the small one, such as insulin (0.40x12.7mm 27Gx1 / 2 ").

It is recommended to do one treatment (with three tubes) per week for six weeks, then, depending on the pathology:

- continue with one treatment per week for a few months;
- the treatments are reduced: one per month.

Thanks for you attention.

With Love

Blue